Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We provide a general framework for estimating persistence in populations which may be affected by catastrophic events, and which are either unbounded or have very large ceilings. We model the population using a birth-death process modified to allow for downward jumps of arbitrary size. For such processes, it is typically necessary to truncate the process in order to make the evaluation of expected extinction times (and higher-order moments) computationally feasible. Hence, we give particular attention to the selection of a cut-off point at which to truncate the process, and we present a simple method for obtaining quantitative indicators of the suitability of a chosen cut-off.

Original publication




Journal article


Theor Popul Biol

Publication Date





77 - 90


Birth Rate, Disasters, Insurance, Major Medical, Markov Chains, Models, Statistical, Models, Theoretical, Mortality, Population Dynamics