Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Loss of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) expression by CpG promoter hypermethylation is associated with metastasis in gastroenteropancreatic neuroendocrine tumors; however, the mechanism of how UCHL1 loss contributes to metastatic potential remains unclear. In this study, we first confirmed that the loss of UCHL1 expression on immunohistochemistry was significantly associated with metastatic tumors in a translational pancreatic neuroendocrine tumor (PNET) cohort, with a sensitivity and specificity of 78% and 89%, respectively. To study the mechanism driving this aggressive phenotype, BON and QGP-1 metastatic PNET cell lines, which do not produce UCHL1, were stably transfected to re-express UCHL1. In vitro assays, RNA sequencing and reverse phase protein array (RPPA) analyses were performed comparing empty-vector negative controls and UCHL1-expressing cell lines. UCHL1 re-expression is associated with lower anchorage-independent colony growth in BON cells, lower colony formation in QGP cells and a higher percentage of cells in the G0/G1 cell-cycle phase in BON and QGP cells. On RPPA proteomic analysis, there was an upregulation of cell-cycle regulatory proteins CHK2 (1.2-fold change, P = 0.004) and P21 (1.2-fold change, P = 0.023) in BON cells expressing UCHL1; western blot confirmed upregulation of phosphorylated CHK2 and P21. There were no transcriptomic differences detected on RNA sequencing between empty-vector negative controls and UCHL1-expressing cell lines. In conclusion, UCHL1 loss correlates with metastatic potential in PNETs and its re-expression induces a less aggressive phenotype in vitro, in part by inducing cell-cycle arrest through posttranslational regulation of phosphorylated CHK2. UCHL1 expression should be considered as a functional biomarker in detecting PNETs capable of metastasis.

Original publication

DOI

10.1530/ERC-18-0507

Type

Journal article

Journal

Endocrine-Related Cancer

Publication Date

01/01/2018

Volume

26

Pages

411 - 423